$\%$ signal $=\frac{(\mathrm{mA} \text { reading })-4 \mathrm{ma}}{20 \mathrm{~mA}-4 \mathrm{~mA}}=\frac{(\text { signal count })-(4 \mathrm{~mA} \text { count })}{(\mathrm{ADC} \max \text { count })-(4 \mathrm{~mA} \text { count })}=\frac{\text { reading }-(\text { live zero })}{\text { span of reading }}$

ADC count $=@ 20 \mathrm{~mA}=31,208$ counts $/ 20 \mathrm{~mA}=1560.4$ counts per mA
$4 \mathrm{~mA}=\frac{1560 \text { counts }}{1 \mathrm{~mA}} * 4 \mathrm{~mA}=6240$ counts
$\%$ signal $\left.=\frac{(\text { signal count })-(4 m A \text { count })}{(A D C ~ m a x ~ c o u n t ~}\right)-(4 m A$ count $) \quad=\frac{(\text { signal count })-(6240 \text { counts })}{(31208 \text { counts })-(6240 \text { counts })}=\frac{(\text { signal count })-(6240)}{24968}$

Analog to Digital Convertor (ADC)

Analog Data Format

The data returned from the analog-to-digital converter in the module is 12 -bit resolute. This value is left-justified into a 16 -bit field, reserving the most significant bit for a sign bit.

